Oskar Mencer, Brian Boucher, Gary Robinson, Jon Gregory, Georgi Gaydadjiev (2018), Multiscale dataflow computing in finance, M.A.H. Dempster, J. Kanniainen, J. Keane, E. Vynckier (Eds.), In High-Performance Computing in Finance p.441-470, Taylor & Francis.
Martijn de Vos, Johan Pouwelse (2018), Real-time Money Routing by Trusting Strangers with your Funds, In 2018 IFIP Networking p.361 - 369, IFIP.
Erwin Van Eyk, Lucian Toader, Sacheendra Talluri, Laurens Versluis, Alexandru Uta, Alexandru Iosup (2018), Serverless is More: From PaaS to Present Cloud Computing, In IEEE Internet Computing Volume 22 p.8-17.
Catalin Bogdan Ciobanu, Georgi Gaydadjiev, Christian Pilato, Donatella Sciuto (2018), The Case for Polymorphic Registers in Dataflow Computing, In International Journal of Parallel Programming Volume 46 p.1185-1219.
Alexey Ilyushkin, Dick Epema (2018), The Impact of Task Runtime Estimate Accuracy on Scheduling Workloads of Workflows, In 18th IEEE/ACM Int'l Symp. on Cluster, Cloud and Grid Computing p.331-341.
Fernando Kuipers, Marcus Märtens, Ernst van der Hoeven, Alexandru Iosup (2018), The Power of Social Features in Online Gaming, Kiran Lakkaraju, Gita Sukthankar, Rolf T. Wigand (Eds.), In Social Interactions in Virtual Worlds p.313-336, Cambridge University Press.
Sven Warris, N. Roshan N. Timal, Marcel Kempenaar, Arne M. Poortinga, Henri van de Geest, Ana L. Varbanescu, Jan Peter Nap (2018), pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment, In PLoS ONE Volume 13.
Long Cheng, Ying Wang, Yulong Pei, Dick Epema (2017), A Coflow-based Co-optimization Framework for High-performance Data Analytics, In Proceedings - 46th International Conference on Parallel Processing, ICPP 2017 p.392-401, IEEE.
Shenjun Ma, Alexey Ilyushkin, Alexander Stegehuis, Alexandru Iosup (2017), ANANKE: a Q-Learning-Based Portfolio Scheduler for Complex Industrial Workflows, In 14th IEEE Int'l Conference on Autonomic Computing (ICAC) p.227-232.
Shenjun Ma, Alexey Ilyushkin, Alexander Stegehuis, Alexandru Iosup (2017), ANANKE: a Q-Learning-Based Portfolio Scheduler for Complex Industrial Workflows: Technical Report DS-2017-001, Delft University of Technology.