Patrick Altmeyer, Mojtaba Farmanbar, Arie van Deursen, Cynthia C.S. Liem (2024), Faithful Model Explanations through Energy-Constrained Conformal Counterfactuals, In Proceedings of the AAAI Conference on Artificial Intelligence p.10829-10837.
Antony Bartlett, Cynthia C.S. Liem, Annibale Panichella (2024), Multi-objective differential evolution in the generation of adversarial examples, In Science of Computer Programming Volume 238.
Patrick Altmeyer, Andrew M. Demetriou, Antony Bartlett, Cynthia C.S. Liem (2024), Position: Stop Making Unscientific AGI Performance Claims, Ruslan Salakhutdinov, Zico Kolter, Katherine Heller (Eds.), In International Conference on Machine Learning Volume 235 p.1222-1242.
Stevan Rudinac, Alan Hanjalic, Cynthia Liem, Marcel Worring, Björn Þór Jónsson, Bei Liu, Yoko Yamakata (2024), Preface, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Volume 14555 LNCS p.v.
Stevan Rudinac, Alan Hanjalic, Cynthia Liem, Marcel Worring, Björn Þór Jónsson, Bei Liu, Yoko Yamakata (2024), Preface, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Volume 14554 LNCS.
Stevan Rudinac, Alan Hanjalic, Cynthia Liem, Marcel Worring, Björn Þór Jónsson, Bei Liu, Yoko Yamakata (2024), Preface, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Volume 14556 LNCS.
Ibo van de Poel, Fernando Secomandi, Edo Abraham, Nynke van Uffelen, Marielle Feenstra, Cynthia Liem, Anna Melnyk, Roberto Rocco, Aarón Moreno Inglés (2024), White Paper: Design for Justice, Delft Design for Values Institute.
Priya Sarkar, Cynthia C.S. Liem (2024), “It's the most fair thing to do, but it doesn't make any sense”: Perceptions of Mathematical Fairness Notions by Hiring Professionals, In Proceedings of the ACM on Human-Computer Interaction Volume 8.
Andra Georgiana Sav, Andrew M. Demetriou, Cynthia C.S. Liem (2023), Annotation Practices in Societally Impactful Machine Learning Applications: What are Popular Recommender Systems Models Actually Trained On?, In CEUR Workshop Proceedings.
P. Altmeyer, G.J.A. Angela, Aleksander Buszydlik, Karol Dobiczek, A. van Deursen, C.C.S. Liem (2023), Endogenous Macrodynamics in Algorithic Recourse [VIDEO].