Bence Mark Halpern, Siyuan Feng, Rob van Son, Michiel van den Brekel, Odette Scharenborg (2022), Low-resource automatic speech recognition and error analyses of oral cancer speech, In Speech Communication Volume 141 p.14-27.

G.J. Verbiest, P.G. Steeneken, M.P. Abrahams, Jorge Martinez (2022), MEMS-BASED MICROPHONE AND MICROPHONE ASSEMBLY.

Giuseppe Garofalo, Manel Slokom, Davy Preuveneers, Wouter Joosen, Martha Larson (2022), Machine Learning Meets Data Modification: The Potential of Pre-processing for Privacy Enchancement, In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) p.130-155, Springer.

S. Zhang, Xunyi Zhao, H. Wang (2022), Mitigate SIR epidemic spreading via contact blocking in temporal networks, In Applied Network Science Volume 7.

Yuanyuan Zhang, Yixuan Zhang, Bence Mark Halpern, Tanvina Patel, Odette Scharenborg (2022), Mitigating bias against non-native accents, In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH p.3168-3172.

Danny Merkx, Sebastiaan Scholten, Stefan L. Frank, Mirjam Ernestus, Odette Scharenborg (2022), Modelling Human Word Learning and Recognition Using Visually Grounded Speech, In Cognitive Computation Volume 15 p.272-288.

Thi Ngan Dong, Stefanie Mucke, Megha Khosla (2022), MuCoMiD: A Multitask graph Convolutional Learning Framework for miRNA-Disease Association Prediction, In IEEE/ACM Transactions on Computational Biology and Bioinformatics Volume 19 p.3081-3092.

Tianyi Zhang (2022), On Fine-grained Temporal Emotion Recognition in Video: How to Trade off Recognition Accuracy with Annotation Complexity?, PhD Thesis Delft University of Technology.

Rohan Money, Joshin Krishnan, Baltasar Beferull-Lozano, Elvin Isufi (2022), Online Edge Flow Imputation on Networks, In IEEE Signal Processing Letters Volume 30 p.115-119.

M. Khosla (2022), Privacy and Transparency in Graph Machine Learning: A Unified Perspective, Georgios Drakopoulos , Eleanna Kafeza (Eds.), In AIMLAI’22: In Proceedings of Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI) at CIKM’22.