He Wang, Nicoleta Cucu Laurenciu, Sorin Dan Cotofana (2021), A Reconfigurable Graphene-Based Spiking Neural Network Architecture, In IEEE Open Journal of Nanotechnology Volume 2 p.59-71.

He Wang, Nicoleta Cucu Laurenciu, Yande Jiang, Sorin Cotofana (2021), Graphene-Based Artificial Synapses with Tunable Plasticity, In ACM Journal on Emerging Technologies in Computing Systems Volume 17.

H. Wang (2021), Graphene-based neuromorphic computing: Artificial spiking neural networks, PhD Thesis Delft University of Technology.

Y. Jiang, N. Cucu Laurenciu, H. Wang, S. D. Cotofana (2020), A study of graphene nanoribbon-based gate performance robustness under temperature variations, In NANO 2020 - 20th IEEE International Conference on Nanotechnology, Proceedings p.62-66, IEEE .

H. Wang, N. Cucu Laurenciu, Y. Jiang, S.D. Cotofana (2020), Graphene Nanoribbon-based Synapses with Versatile Plasticity, In 2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) p.1-6, IEEE .

H. Wang, N. Cucu Laurenciu, Y. Jiang, S.D. Cotofana (2020), Ultra-Compact, Entirely Graphene-based Nonlinear Leaky Integrate-and-Fire Spiking Neuron, In ISCAS 2020: IEEE International Symposium On Circuits & Systems, IEEE .

H. Wang, N. Cucu Laurenciu, Y. Jiang, S. D. Cotofana (2019), Atomistic-level hysteresis-aware graphene structures electron transport model, In 2019 IEEE International Symposium on Circuits and Systems, ISCAS 2019 - Proceedings Volume 2019-May p.1-5, Institute of Electrical and Electronics Engineers (IEEE).

Yande Jiang, Nicoleta Cucu Laurenciu, He Wang, Sorin Dan Cotofana (2019), Graphene Nanoribbon Based Complementary Logic Gates and Circuits, In IEEE Transactions on Nanotechnology Volume 18 p.287-298.